Parametric Optimization of Reconfigurable Designs Using Machine Learning
نویسندگان
چکیده
This paper presents a novel technique that uses metaheuristics and machine learning to automate the optimization of design parameters for reconfigurable designs. Traditionally, such an optimization involves manual application analysis as well as model and parameter space exploration tool creation. We develop a Machine Learning Optimizer (MLO) to automate this process. From a number of benchmark executions, we automatically derive the characteristics of the parameter space and create a surrogate fitness function through regression and classification. Based on this surrogate model, design parameters are optimized with meta-heuristics. We evaluate our approach using two case studies, showing that the number of benchmark evaluations can be reduced by up to 85% compared to previously performed manual optimization.
منابع مشابه
Multi-objective Self-optimization of Reconfigurable Designs with Machine Learning
Optimizing reconfigurable designs is a complex task that usually involves manual design analysis and subsequent tweaking. We present a new Multi-Objective Machine Learning Optimizer (MOMLO) which supports self-optimization of reconfigurable designs through automatic analysis and adaptation of design parameters. From a number of benchmark executions, our tool automatically derives the characteri...
متن کاملRobot and locomotion-controller design optimization for a reconfigurable quadruped
We present an automated approach to robot and locomotion-controller design optimization, using reinforcement learning methods that have been successfully demonstrated to teach a real prototype quadruped various walking gaits. The same machine learning methods are used here for a different purpose: to optimize robot and locomotion-controller design. Optimization can be used before or after build...
متن کاملStock price analysis using machine learning method(Non-sensory-parametric backup regression algorithm in lin-ear and nonlinear mode)
The most common starting point for investors when buying a stock is to look at the trend of price changes. In recent years, different models have been used to predict stock prices by researchers, and since artificial intelligence techniques, including neural networks, genetic algorithms and fuzzy logic, have achieved successful re-sults in solving complex problems; in this regard, more exploita...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملIntelligent application for Heart disease detection using Hybrid Optimization algorithm
Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...
متن کامل